

JASON HO

(+1) 401-965-7728 ◊ jasonchekfungho@gmail.com ◊ <https://chekfung.github.io/portfolio>

EDUCATION

University of Texas, Austin	<i>Aug 2022 - Present</i>
Ph.D. Electrical and Computer Engineering in Computer Architecture	GPA: 3.96
<i>Thesis Topic:</i> Design of Energy-Efficient Hybrid Analog/Digital Neuromorphic Architectures	
University of Texas, Austin	<i>Aug 2022 - Dec 2024</i>
M.S. Electrical and Computer Engineering in Computer Architecture	GPA: 3.96
<i>Relevant Coursework:</i> Cross-Layer ML HW/SW Codesign, Parallel Computer Architecture, Prediction Mechanisms in Computer Architecture, ML for Computer Systems, Low Power Design	
Brown University	<i>Sept 2018 - May 2022</i>
Sc.B. Computer Engineering with Honors	GPA: 3.96
<i>Thesis:</i> Tools for Understanding the Computational Behaviors of Biofilms	
<i>Relevant Coursework:</i> VLSI Design, Digital Signal Processing, Operating Systems	

RESEARCH EXPERIENCE

Graduate Researcher , SLAM Lab, UT Austin	<i>Aug 2022 - Present</i>
<i>Advisor:</i> Professor Andreas Gerstlauer	
• Researching the co-design of hybrid analog/digital neuromorphic (brain-like) computing systems that combine the efficiency of analog computing with the scalability of a digital backend	
• Investigating the use of machine learning to create surrogate models of analog circuits, resulting in 3 orders of magnitude simulation speedup over SPICE with energy, latency and behavior estimation under 7%, 8%, and 2%, respectively	
• Researching tradeoffs of novel devices such as RRAMs in hybrid neuromorphic architectures for spiking neural network acceleration	
Undergraduate Researcher , SCALE Lab, Brown University	<i>Jan 2021 - Jun 2022</i>
<i>Advisor:</i> Professor Sherief Reda and Professor Jacob Rosenstein	
• Modeled bacterial biofilm coupling interactions as Kuramoto oscillators to investigate non-conventional oscillatory computing systems	
• Developed super-resolution techniques for impedance tomography on a custom imaging and stimulation platform for oscillatory computing system exploration	

PUBLICATIONS

J. Ho, E. Atayeter, T. Blottin, I. Joe, R. Sistrunk, B. Zhang, L. Solnica-Krezel, A. Gerstlauer, J. Wallingford, R. Gray, "Cilia.io: Computer vision and machine learning reveal spatial patterns of cilia beating dynamics in the spinal cord", in *Cell Reports Methods*, 2026. (in review)

J. Boyle, **J. Ho**, A. Aalund, Z. Houlton, A. Iman, I. Gonzalez, K. Jha, L. Lui, P. Shroff, R. Sam, S. Cardwell, F. Chance, A. Gerstlauer, "Bridging the Gap in Neuromorphic Co-Design with the SANA-FE Co-Simulation Framework", in *IEEE Computer Special Issue: Convergence in Neuromorphic Systems: From Circuit Innovation to Adaptive Cognition*, 2026. (in review)

J. Ho, J. Boyle, L. Liu, A. Gerstlauer, "LASANA: Large-Scale Analog Surrogate Modeling for Neuromorphic Architecture Exploration", in *International Symposium on Machine Learning for Computer-Aided Design (MLCAD)*, 2025.

J. Boyle, **J. Ho**, M. Plagge, S. Cardwell, F. Chance, A. Gerstlauer, "Exploring Dendrites in Large-Scale Neuromorphic Architectures," in *International Conference for Neuromorphic Systems (ICONS)*, 2025.

K. Hu, **J. Ho** and J. K. Rosenstein, "Super-Resolution Electrochemical Impedance Imaging with a 512×256 CMOS Sensor Array," in IEEE Transactions on Biomedical Circuits and Systems (TBioCAS), 2022, doi: 10.1109/TBCAS.2022.3183856.

INVITED TALKS

"LASANA: Large-Scale Analog Surrogate Modeling for Neuromorphic Architecture Exploration", Qualcomm Internal Ph.D. Talk, July 2025.

POSTER PRESENTATIONS

"LASANA: Large-Scale Analog Surrogate Modeling for Neuromorphic Architecture Exploration", 6G @ UT Symposium, Austin, Texas, November 2025.

"LASANA: Large-Scale Analog Surrogate Modeling for Neuromorphic Architecture Exploration", iMAG-INE Consortium Student Poster Session, Austin, Texas, April 2025.

"LASANA: Large-Scale Analog Surrogate Modeling for Neuromorphic Architecture Exploration", AMD Poster Session, Austin, Texas, November 2024.

"LASGNA: Large-Scale Analog Surrogate Modeling for General Neuromorphic Architectures", MLCAD 2024, Snowbird Utah, September 2024.

ENGINEERING EXPERIENCE

GPU Power Architect Intern, Nvidia

May 2026 - Sept 2026

- TODO

CPU Power Characterization and Modeling Intern, Qualcomm

Jun 2025 - Aug 2025

- Characterized and modeled energy efficiency of the power management IC tree in future Oryon CPUs targeted for mobile and laptop applications

Power and Performance Lead/Architect Intern, AMD

May 2023 - Aug 2023

- Characterized power and performance on future APU plus discrete GPU platforms focused on power allocation algorithms between the APU and GPU on GPU-bound benchmarks
- Owned and deployed an internal data analysis tool that linked Power BI and internal databases to automate multi-phasic statistical analysis of benchmark logs, providing a 100x speedup from previous methods
- Maintained, built, and ran benchmarks on 8 separate systems for power and performance characterization

VLSI Read Channel Design and Verification Intern, Seagate Technology

Jun 2022 - Aug 2022

- Lead verification transition for the team from VMM to UVM environment while reusing as much code as possible
- Developed firmware initialization and configuration code for read channel UVM environment with functionality for large-scale read channel testbenches

VLSI Design and Verification Engineering Intern, Seagate Technology

May 2021 - Aug 2021

- Designed and optimized RTL block to increase ECC correction throughput in the hard drive read pipeline
- Developed VMM infrastructure to verify the new RTL block robustly

FPGA Engineering Intern, Nabsys

Jun 2020 - Sept 2020

- Developed parallel signal processing algorithms and state machines on Xilinx FPGAs for analysis of tagged DNA for whole genome sequencing

- Optimized FPGA design to reduce slices by 2x, while increasing throughput by 16x to process streaming of 128 nanopore sensors

Security Engineering Intern, Brown OIT

Apr 2019 - Sept 2019

- Designed Copyright infringement scripts in Python that parsed DMCA emails, searched firewall logs, and verified infringement on University firewall traffic, saving non-technical staff over 3 hours of time per case or speedup of 30x
- Queried SQL databases to aggregate Crowdstrike data with firewall permit-denry traffic on real-time dashboards to display malicious traffic by optimizing firewall parsing by 20 times using regex

TEACHING AND MENTORING EXPERIENCE

ECE Graduate Peer Mentor, UT Austin

Aug 2023 - Present

- Mentor group of 6-8 first-year Electrical and Computer Engineering graduate students through the transition to UT Austin

Master's Student Mentor, UT Austin

Aug 2023 - Jun 2025

- Mentored master's student interested in pursuing a Ph.D. in computer architecture; Now pursuing a Ph.D. at Johns Hopkins University

EEMP Mentor, Science Mentorship Institute

Feb 2024 - Aug 2024

- Mentor for two high school students interested in research, which culminated in a literature-review-based poster session

Head Teaching Assistant, ENGN 1640: Design of Computing Systems

Jan 2022 - May 2022

- Ran office hours twice a week in the computing lab to help students build RISC-V processors on Altera FPGA boards
- Held conceptual hours for students and helped guide students toward designs optimized to minimize logic, or speed

Teaching Assistant, ENGN 1580: Communication Systems

Jan 2022 - May 2022

Student TA Evaluation Score: 5.0 / 5.0

- Designed a final project for students to emulate communication across a physical channel amid noise and crosstalk on the channel.
- Held conceptual hours for students to further their understanding beyond the classroom

Head Teaching Assistant, CSCI 1600: Real-Time and Embedded Software

Sept 2021 - Dec 2021

- Lead two lab sessions a week, teaching students Arduino and breadboarding on topics such as timers, interrupts, real-time operating systems, and sensors
- Held conceptual hours once a week for any students to come to as well
- Guided and provided advice to students for their final design projects

Mentor, MAPS (Matched Advising Program for Sophomores)

Jan 2021 - May 2022

- Advised mentees interested in concentrating in Computer Engineering, Computer Science, or related fields on classes, research, and internship opportunities

Mentor, Brown School of Engineering

Jan 2021 - May 2022

- Helped mentees devise plans on completing concentration requirements as well as providing advice on classes, research, internship opportunities, and approach to learning

Teaching Assistant, ENGN 0500: Digital Computing Systems

Jan 2021 - May 2021

Student TA Evaluation Score: 4.86 / 5.0

- Held weekly office hours to provide conceptual understanding of digital design, computer architecture, and programming assignments
- Helped teach students in class with interactive digital design demonstrations and embedded systems coding

OUTREACH AND VOLUNTEER WORK

ABET External Advisory Board Member, Brown University

Jan 2025

- Served on the external advisory board with 5 other members for ABET accreditation of the Brown University engineering program

EEMP Curriculum Developer, Science Mentorship Institute

Feb 2024 - Jun 2024

- Design lecture curriculum to support SCI-MI's 2024 launch of the electrical engineering mentorship program for exposure to research in computer architecture for high school students

ECE Department Representative, UT Austin Graduate Student Assembly

Aug 2023 - Dec 2024

- Vote on legislation as the graduate student liaison for the Department of Computer and Electrical Engineering at UT Austin
- Relay important information from council meetings to department officials relating to graduate student affairs

Project Manager and Developer, Develop for Good

Sept 2020 - Jan 2021

- Developed and deployed a Django website for CARE International on analysis and visualization of USAID Hamzari data in an internal website
- Supervised a team of 6 Frontend, Backend, UI/UX developers, and Data Scientists

RELEVANT PROJECTS

Cache Coherence Simulator

Sept 2023 - Dec 2023

- Designed and implemented a directory-based MESI cache coherence simulator in C++ for up to 32 processors in distributed shared-memory parallel machines

CNN FPGA Hardware Accelerator

Sept 2022 - Dec 2022

- Designed and deployed CNN accelerator on AWS FPGAs using blocking systolic matrix multipliers on FashionMNIST problem with Xilinx Vitis HLS tools
- Reduced trained parameter sizes by 75% using custom fixed-point 8-bit value representations with little loss to test accuracy.

AWARDS

NSF GRFP Honorable Mention, National Science Foundation

Apr 2024

Cockrell School of Engineering Fellow, UT Austin

2022-Current

UT Austin Graduate Excellence Fellow, UT Austin

2022-Current

Sigma Xi Research Honor Society, Brown University

May 2022

NSF GRFP Honorable Mention, National Science Foundation

Apr 2022

Tau Beta Pi Engineering Honor Society, Brown University

Dec 2021

Grimshaw-Gudewicz Annual Scholar

2020-2022

Best Use of Google Cloud, Hack @ Brown

Jan 2020

Valedictorian, Seekonk High School

May 2018

PROFESSIONAL MEMBERSHIPS

Student Member, IEEE

2021 - Present

Student Member, ACM

2021 - Present

SKILLS

Programming Languages

Python, C, C++, Verilog, SystemVerilog, SPICE

Applications

PyTorch, Cadence Virtuoso, Matlab, Gem5, Synopsys HSPICE

Languages

English (Fluent), Cantonese (Fluent)